Estimation for random coefficient integer-valued autoregressive model under random environment
نویسندگان
چکیده
منابع مشابه
Estimation in nonstationary random coefficient autoregressive models
We investigate the estimation of parameters in the random coefficient autoregressive model Xk = (φ+ bk)Xk−1 + ek, where (φ,ω 2, σ2) is the parameter of the process, Eb0 = ω2, Ee0 = σ 2. We consider a nonstationary RCA process satisfying E log |φ + b0| ≥ 0 and show that σ2 cannot be estimated by the quasi-maximum likelihood method. The asymptotic normality of the quasi-maximum likelihood estimat...
متن کاملEstimation in Random Coefficient Autoregressive Models
We propose the quasi-maximum likelihood method to estimate the parameters of an RCA(1) process, i.e. a random coefficient autoregressive time series of order 1. The strong consistency and the asymptotic normality of the estimators are derived under optimal conditions.
متن کاملLeast squares estimation in a simple random coefficient autoregressive model.∗
The question we discuss is whether a simple random coefficient autoregressive model with infinite variance can create the long swings, or persistence, which are observed in many macro economic variables. The model is defined by yt = stρyt−1 + εt, t = 1, . . . , n, where st is an i.i.d. binary variable with p = P (st = 1), independent of εt i.i.d. with mean zero and finite variance. We say that ...
متن کاملDetection of Parameter Change in Random Coefficient Integer-Valued Autoregressive Models
Abstract: This paper considers the problem of testing for parameter change in random coefficient integer-valued autoregressive models. To overcome some size distortions of the existing estimate-based cumulative sum (CUSUM) test, we suggest estimating function-based test and residual-based CUSUM test. More specifically, we employ the estimating function of the conditional least squares estimator...
متن کاملUnified Interval Estimation for Random Coefficient Autoregressive Models
The consistency of the quasi maximum likelihood estimator for random coefficient autoregressive models requires that the coefficient be a non-degenerate random variable. In this paper we propose empirical likelihood methods based on weighted score equations to construct a confidence interval for the coefficient. We do not need to distinguish whether the coefficient is random or deterministic an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2019
ISSN: 1687-1847
DOI: 10.1186/s13662-019-2436-2